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"More than any other theoretical procedure, numerical 
integration is also subject to the criticism that it yields little 
insight into the problem.  The computed numbers are not 
only processed like data but they look like data, and a 
study of them may be no more enlightening than a study of 
real meteorological observations.  An alternative procedure 
which does not suffer this disadvantage consists of 
deriving a new system of equations whose unknowns are 
the statistics themselves.  This procedure can be very 
effective for problems where the original equations are 
linear, but, in the case of non-linear equations, the new 
system will inevitably contain more unknowns than 
equations, and can therefore not be solved, unless 
additional postulates are introduced."

Edward Lorenz, The Nature and Theory of the General Circulation (1967)





Thermodynamics vs. Statistical Mechanics

Equilibrium vs. Out-of-Equilibrium

PV = nRT



Hopf Functional Approach
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U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov



General Equations of Motion
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Exact Solution For Orszag-McLaughlin Dynamics

Ookie Ma and JBM: “Exact Equal Time Statistics of Orszag-McLaughlin Dynamics By 
The Hopf Characteristic Functional Approach,” J. Stat. Mech. Th. Exp. p10007 (2005)
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Flow Equation Approach
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S. D. Glazek and K. G. Wilson, PRD 48, 5863 (1993); F. Wegner, Ann. Phys. 3, 77 (1994).

Ĥ(s) = Ĥ0(s) + Ĥ
′(s)

Ĝ(s) = [Ĥ0(s), Ĥ(s)]
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Closure

more derivatives w.r.t. u
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Observable DNS Cumulant Hopf / Flow

<z> 22.7 23.4 22.4

<y2> 42.6 32.9 40.2

Direct Numerical Simulations

vs.

Statistical Approaches





from Climate Change 1995:
The Science of Climate Change

Atmospheric Dynamics



Single Layer Models
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Freely Decaying Turbulence

on Sphere



Coriolis Force

∂q

∂t
+ J(ψ, q) = 0

f = 2Ω sin(φ)

q = ω + f
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Absolute

vorticity

Relative vorticity

Coriolis term





Coriolis Force



Chelton et al., Science 303, 978 (2004)



Stratification

q = ∇
2ψ + f −
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Stratification Sets Synoptic Length 

Scale



Test Case: A Point Jet
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A. Sanchez-Lavega et al. Nature 451, 437 (2008)

∂q
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+ J [ψ, q] =

qjet − q

τ



Forced-Damped Equatorial Barotropic Jet

Schoeberl and Lindzen, J. Atmos. Sci. 41, 1368 (1984); Shepherd, J. Fluid. Mech. 196, 91 (1988)
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“Point” jet
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Limiting Cases With No Fluctuations

τ → 0 : ω → ω0

τ → ∞ : ω → equilibrium jet

[Turkington et al., PNAS99, 12346 (2001);  Weichman, PRE73, 036313 (2006)]

Largest fluctuations at intermediate relaxation times

∂ω

∂t
+ #v · #∇(ω + f) = (ω0 − ω)/τ



Cumulant Expansion

〈ω(φ, λ) ω(φ′, λ′)〉C = c2(φ, φ′, λ − λ′)

〈ω ω
′〉C ≡ 〈ω ω

′〉 − 〈ω〉〈ω′〉

〈ω(φ, λ)〉 = c1(φ) Azimuthal symmetry

〈ω ω
′
ω
′′〉C = 0, etc. Closure

〈ωω〉C ≥ 0 Positivity



Direct Numerical Simulation of Jet
jet relaxation time = 25 days

FIG. 1. Absolute vorticity q as calculated by DNS for a jet relaxation time of τ = 25 days.

The left and right hemispheres are shown in each panel; each is inclined by 20◦ to make the

poles visible. Deep red (blue) corresponds to q = ±10−4 sec−1. Top left panel: Initial absolute

vorticity of the equatorial zonal jet. Bottom left panel: Early development of an instability.

Top right panel: Fully developed jet that is in a statistical steady state. Bottom right panel:

Mean absolute vorticity 〈q("Ω)〉 = c1(φ)+ f(φ) of the fully developed jet, showing the effect of

turbulence on the mean vorticity profile and the recovery of azimuthal symmetry in the statistic.

20

JBM, E. Conover, and T. Schneider, arXiv:0705.0011, J. Atmos. Sci. (in press)
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! = 0 days
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2nd Cumulant = 2-point Correlation Function



25 days



DNS

CE
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O!Gorman and Schneider, Geophys. Res. Lett. 34, L22801 (2007)



shallowing of the spectrum is reminiscent of the n!5/3

mesoscale range that is seen in observational data near the
tropopause [Nastrom and Gage, 1985], but here it is more
likely an indication that eddy-eddy interactions prevent a
build-up of energy at these relatively small length scales.
[16] That the shape of the eddy energy spectrum is

recovered without eddy-eddy interactions over a wide
wavenumber range helps resolve the paradox that the
atmospheric energy spectrum has the power-law decay that
would result from a enstrophy cascade in an inertial range
even though there are significant terms in the atmospheric
spectral energy budget other than those related to eddy-eddy
interactions. Our results show that these other terms would
by themselves lead to a similar energy spectrum. We also
found similar results for other parameter settings in the
GCM and using an idealized GCM [Held and Suarez, 1994]
with different radiation and boundary layer schemes and
without a convection scheme. Therefore, our results for the
energy spectrum do not appear to be artifacts of specific
parameter settings or parameterizations. The approximate
n!3 spectrum in the simulation without eddy-eddy inter-
actions may be explained by an unconventional enstrophy
cascade in which the zonal-mean component plays a central
role [cf. Bartello and Warn, 1988], but this is difficult to
assess given the number of important terms in the spectral
energy budget. Although we have only considered the
atmosphere here, similar considerations may apply to the

energy spectrum in the ocean at length scales smaller than
the oceanic Rossby deformation radius.
[17] The eddy energy spectrum of the simulation without

eddy-eddy interactions (Figure 2) is more jagged than the
spectrum of the full simulation. One effect of eddy-eddy
interactions, then, is to smooth the spectrum by transferring
energy between wavenumbers. Eddy-eddy interactions
also tend to isotropize the eddies in the horizontal. The
two-dimensional spectral energy distribution reveals
isotropization of the eddy energy in the full simulation for
length scales smaller than the eddy length scale but anisot-
ropy at all length scales in the simulation without eddy-eddy
interactions.

4.3. Mean Circulations

[18] The general circulation of the simulation without
eddy-eddy interactions shares many features with that of the
full simulation, but there are also significant differences.
The mean zonal wind in both simulations exhibits upper-
level westerly jets, which illustrates that extratropical jets
can form as a result of eddy-mean flow interactions alone,
without nonlinear eddy-eddy interactions (Figure 3). How-
ever, the simulation without eddy-eddy interactions has a
second jet in each hemisphere, and the Eulerian-mean
circulation has corresponding extra eddy-driven cells. The
mean circulation of the simulation without eddy-eddy
interactions is compressed in the meridional direction rela-
tive to that of the full simulation. A possible explanation is
that although most eddy energy resides at the energy-
containing eddy length scale in the full simulation, and
there is no general cascade of energy to larger scales,
upscale energy transfer can still be expected to occur in
the region of spectral space close to zonal wavenumber zero
[Rhines, 1975; Vallis and Maltrud, 1993], leading to eddy

Figure 2. Vertically averaged eddy kinetic energy spec-
trum vs. spherical wavenumber for the simulation without
eddy-eddy interactions (solid line) and the full simulation
(dashed line). The total eddy kinetic energy of the
simulation without eddy-eddy interactions is 2.1 times
greater, and its energy spectrum has been divided by this
factor for ease of comparison of the spectral shapes.
Contributions from zonal wavenumber zero (the zonal
mean) are omitted in calculating the eddy energy spectra.
The solid straight line shows a reference power law of n!3.

Figure 3. Mean eastward wind (m s!1) in the meridional
plane in (a) the full simulation and (b) the simulation
without eddy-eddy interactions. The mean is a zonal, time,
and interhemispheric average with mass weighting. The
thick solid lines are the zero-wind lines.

L22801 O’GORMAN AND SCHNEIDER: GCM WITHOUT EDDY-EDDY INTERACTIONS L22801
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Advantages of Statistical 

Approach

• Deeper understanding possible.

• Possibility to treat all processes statistically, 
not just the subgridscale ones.

• Inhomogeneous geophysical flows with 
mean shear flows are less nonlinear than 
isotropic turbulence -- progress possible.

• Faster: Time-independent fixed point.

• Faster: Statistics vary slowly in space.



Lake Mead
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